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Abstract

The Impulse Virtual Distortion MethodIVDM is developed from the Virtual Distortion MethodVDM (static case) and dedicated to
remodelling of structures under dynamic load as well as adapted to damage identification. The latter application of theIVDM is based
on the analysis of perturbation in vibration response caused by structural defects. In general case, when a few defects are detected,
the method is very costly numerically and time-consuming. In order to avoid this problem, the presented approach is concentrated on
one damage in the considered structure only. This paper describes the fundamentals of VDM and IVDM. Then the methodology of the
single damage identification is presented.
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1. Introduction

There are some industrial structures (such as pipelines, stor-
age tanks, suspension bridges), the technical condition of which
should be monitored, especially zones prone to damage in corro-
sive environment. The Impulse Virtual Distortion Method is ded-
icated to remote monitoring of the above-mentioned structural
health.

An extensive presentation of the Virtual Distortion Method
(strategies of control and design) was given in works [1] and [2].
A comprehensive idea of the application of the Impulse Virtual
Distortion Method (IVDM) to the damage detection is given in
[3] and [6].

The Impulse Virtual Distortion Method with reference to
damage detection was presented in general case (simultaneously
a few defects possible) in [5], however is it very costly numer-
ically and time-consuming even for a non-complex structure.
Now, in this paper we assume that a structure is initially healthy
and we are able to perform its continuous monitoring and observe
the first occurred damage. Assuming one defect to be detected,
the time of calculation and memory requirements have been sig-
nificantly reduced.

2. Basics ofVDM and IVDM

2.1. Virtual Distortion Method

The following notions play the most substantial role in VDM:

• the virtual distortion ε0
i , modelling structural modifica-

tion, is an initial strain introduced in a structural element,

• the unit distortion is the virtual distortion that would
cause a unit strain in an element (out of structure),

• the compensative loadis the self equilibrated load, ap-
plied to the nodes of an element, that is equivalent to unit
distortion,

• the strain influence matrix Dij and thegeneral influ-
ence matrix D̆αi, which contain respectively the gener-
alized strains and a linear combination of the generalized
displacement obtained for unit distortion imposed succes-
sively in structural elements.

Let us denote as
L
fα (or L

εi) the original response of a considered
structure — linear combination of any generalized displacements
(or generalized strains). Assuming structural modification (in one
location) and having calculated influence matrices and the distor-
tions, we can determine the updated response as follows:

εi =
L
εi +

R
εi =

L
εi +

X
j

Dij ε0
j , (1)

fα =
L
fα +

R
fα =

L
fα +

X
i

D̆αi ε0
i . (2)

The second terms (R
εi and

R
fα) in the above equations describe the

structural modification. The sums concern elements in which a
damage can occur. In general, there are a few components of dis-
tortion for an element (for truss element — one component, for
beam element — three components, etc.).

2.2. Modelling of Structural Parameters

Let us define the vector of stiffness modificationµi = k′i/ki,
whereki andk′i are stiffness parameters of an intact and modified
structure (e.g. Young’s modulus). We consider the structure mod-
ified in some locations, which we model by the original structure
with imposed distortions in those locations. We postulate that
the structure modelled by distortions and the modified structure
are identical in the sense of generalized strains and stresses. The
general stresses and strains in some member of the structure are
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given by Eqn (3) and (4).

Si = ki
L
εi +

X
j

(Dij − δij) ε0
j , (3)

εi =
L
εi +

X
j

Dij ε0
j . (4)

2.3. Impulse Virtual Distortion Method

The Impulse Virtual Distortion Method is used for dynamic
problem, so now the virtual distortion and impulse influence ma-
trices are time-dependent. The updated general dynamic response
is computed analogously to the Eqn (2):

fα(t) =
L
fα(t)+

R
fα(t) =

L
fα(t)+

X
i

tX
τ=0

D̆αi(t−τ) ε0
i (t), (5)

and strains analogously to the Eqn (1):

εi(t) =
L
εi(t) +

R
εi(t) =

L
εi(t) +

X
j

tX
τ=0

Dij(t− τ) ε0
j (τ). (6)

In order to determine the vitual distortionε0
i (τ), for every suc-

cessive instantτ , the following system of equations is solved:
X

j

A0
ij ε0

j (t) =

8
>>>><
>>>>:

(1− µi)
L
εi(0) for t = 0,

(1− µi)

"
L
εi(t) +

X
j

t−1X
τ=0

Dij(t− τ)ε0
i (τ)

#

for t > 0,

(7)

where the matrix:A0
ij = δij − (1 − µi)Dij(0) is not time-

dependent.

3. Damage Identification Methodology

Damage identification leads to the problem of minimization
of the objective functionF with respect to the vector of structural
modification parameterµi . We assume the objective function as
the distance between the original response (unmodified structure)
and the observed one (damaged):

F (µi) =
X

α

X
t

h
fα(t, µi)−

M
fα(t)

i2

. (8)

The gradient of the above function, with respect toµi, yields:

∂F (µi)

∂µj
= 2

X
α

X
t

h
fα(t, µi)−

M
fα(t)

i ∂fα(t, µi)

∂µj
, (9)

where:

∂fα

∂µj
(t, µi) =

X
i

tX
τ=0

D̆αi(t− τ)
∂ε̂i

∂µj
(t, µi).

In order to determine the minimum of the objective function

it is necessary to compute the distortion gradient∂ε0
i

∂µj
. In consec-

utive iterations the vector of structural modificationsµi can be
determined as follows:

µ
(s+1)
i = µ

(s)
i −

∂F

∂µ
(s)
j

max|gradF |∆, (10)

wheres denotes the current iteration,s + 1 the next one and the
step length∆ is adjusted due to the steepest descent optimisation
strategy.

4. Single Defect Case

Let us consider a structure to be continually monitored. One
(or more) permanently located sensor is collecting a response of
the structure for a locally generated impulse. For the original
(healthy) structure this response is considered as the reference
one. If an analyzed response is different from the reference one
it means that the structure has been modified. In this work we as-
sume that only one defect occurred. In general case (multiple de-
fects) for inverse analysis the whole strain influence matrix must
be computed which is highly time demanding. The advantage of
the proposed approach is minimization/decreasing of time com-
putational. In the single defect case the reduced diagonal Impulse
Influence Matrix is needed.

4.1. Investigation of the Objective Function in Single Element

In this section we will consider a single element of a structure
as a possible defect location. For each single element an objec-
tive function is defined. A collection of the values of the objective
functions forms a vector. Modelling the modification parameter
µe

i by virtual distortionε0e
i (t), the vector of objective functions is

iteratively minimized. The least value/component of this vector
indicates the damaged element. Thus the system of Eqns (7) can
be written for each elemente as follows:

A0e
ij ε0e

j (t) =
8
<
:

(1− µe
i )

L
εe

i (0) for t = 0,

(1− µe
i )

ů
L
εe

i (t) +
t−1P
τ=0

De
ij(t− τ) ε0e

j (τ)

ÿ
for t > 0,

(11)

where: the matricesDe
ij , ε0e

j (t) and L
εe

i (t) concern an element
e. For a beam element there are three components of strain, thus
i = 1, 2, 3 andj = 1, 2, 3. Assuming one sensor is collecting
response, the vector of objective functionsF e is built (for every
elemente):

F e(µe
i ) =

X
t

h
f1(t, µ

e
i )−

M
f1(t)

i2

. (12)

For minimisation of the above objective functions we can
rewrite Eqn (10) as follows:

µ
(s+1)
i = µ

(s)
i −

∂F

∂µ
(s)
i

max|gradF |∆. (13)

4.2. Numerical test

Let us consider a cantilever beam with the excitation ap-
plied to element No. 25, shown in Fig. 1. Load is time-
dependent as marked in Fig. 2. The response of this beam
is measured as difference of nodal rotations (element No. 44):
M
f1(t) = α44

2 (t)−α44
1 (t). The geometrical, physical and analysis

data are given below:

• total length:98cm (49 beam elements),

• cross section:0.5cm× 2cm,

• density:7800 kg
m3 ,

• Young’s modulus:210 GPa,

• time step3× 10−5 s (1000 steps) .
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Figure 1: Tested cantilever beam.
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Figure 2: Beam excitation applied to element No.25.
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Figure 3: Beam responses measured by the sensor (element No.44).
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The measured response (in this case — calculated numeri-
cally) of the original beam is shown in Fig. 3. This graph also
included the response of the modified structure — analysis was
performed with the reduced Young’s modulus of the element No.
40, µ40 = E/E′ = 0.45. In the inverse analysis it was assumed
that possible defect can occur in elements Nos.25− 49.

Figure 4 presents a decrease of the objective functionsf
(20)
i

andf
(100)
i obtained after20 and100 iterations respectively. The

values of those objective functions are referenced to the first one
f
(n)
i

f
(1)
i

(in the logarithmic scale). The most evident descent of the

objective function (∼ 1019 after 20 iterations and∼ 1023 af-
ter 100 iterations) is for the element No.40 and is indicating
µ40 = 0.45 (see Fig. 5). Identification history iterations and
convergence of the objective function for this element are shown
in Fig. 5 and Fig. 6.

4.3. General Approach for a Single Defect

In section 2 and 3 we discussed a general approach to inverse
problem. Now, we will use the diagonal Impulse Influence Ma-
trix for every time stept .

Let us consider a dynamically loaded structure with sensors
placed in some locations similarly as in previous subsection. Let
us assume, a possible defect to be detected is placed in elementi

and the measured response
M
fα(t) is in locationα. This response

can be expressed by Eqn (5). In order to determine the general-
ized strain in locationi with imposed virtual distortions we can
use Eqn (6) substitutingj = i as follows (sum overi elimi-
nated):

εi(t) =
L
εi(t) +

tX
τ=0

Dii(t− τ) ε0
i (τ). (14)

On the other hand, the postulate, saying that the structure
modelled by distortions and the modified one have to be iden-
tical in the sense of equality of their strain and stress fields, leads
to the following equation:

ε0
i (t) = (1− µi) εi(t), (15)

where the components of strainεi(t) depend on distortionsε0
i (t).

Substituting Eqn (14) to Eqn (15) we have the following relation-
ship:

µi

"
L
εi(t) +

tX
τ=0

Dii(t− τ) ε0
i (τ)

#
=

=
L
εi(t) +

tX
τ=0

Dii(t− τ) ε0
i (τ)− ε0

i (t). (16)

From the above equation the virtual distortionε0
i (t) can be found

(cf. Eqn (7) and Eqn (11)):

a0
i ε

0
i (t) =

8
<
:

(1− µi)
L
εi(0) for t = 0,

(1− µi)

ů
L
εi(t) +

t−1P
τ=0

Dii(t− τ)ε0
i (τ)

ÿ
for t > 0,

where the vectorai = δii −Dii(0)(1− µi).
The objective function and the vector of structural modifica-

tions can be used according to Eqn (8) and Eqn (10) (j = i).

5. Non-uniquess of the inverse problem

The non-uniquess of our inverse problem has been already
studied and discussed in [4]. The VDM approach allows to iden-
tify the non-uniquess in advance and to modify the damage iden-
tification treatment accordingly.

Let us consider the tested truss-beam model (linearwave-
duct) shown in Fig. 7 with determined locationso for the tested
impulse,i andj for potential damages andk for the sensor, re-
spectively.

It has been discussed [3], [5], [6] that modelling of local stiff-
ness reductionµ = E′/E (E denotes the initial stiffness andE′

the modified one) introduced in locationsi and j can be done
through the following formulas:

µi =
εi(t)− ε0

i (t)

εi(t)
=

εj(t)− ε0
j (t)

εj(t)
, (17)

whereεi(t) andεj(t) are superpositions of responses caused by
an externally generated impulse (in locationo) and responses due
to locally generated virtual distortions (ε0

i (t) andε0
j (t)). It fol-

lows from Eqn (17) that the same modificationµ located in ele-
menti or j leads to the relation (for each time stept):

εj(t) [εi(t)− ε0
i (t)] = [εj(t)− ε0

j (t)] εi(t), (18)

or after simplification:

εj(t) ε0
i (t) = ε0

j (t) εi(t). (19)

Also the following relations take place:

ε0
i (t) = (1− µ) εi(t), ε0

j (t) = (1− µ) εj(t). (20)

Let us now postulate that the sufficient condition for non-
uniquess of the inverse problem (for a symmetric configuration
of elementso, i, j, k) is the identity of the following functionals:

X

t̃≤t

Dki(t− t̃) Dio(t̃− τ) =

=
X

t̃≤t

Dkj(t− t̃) Djo(t̃− τ), (21)

for everyτ ≤ t̃.
In order to demonstrate the related mathematical apparatus

let us determine an auxiliary input distortionε0
o(τ) generated in

locationo and causing the same strain response in locationi as
locally introduced virtual distortionε0

i (τ):

X

τ≤t̃

Dio(t̃− τ) ε0
o(τ) =

X

τ≤t̃

Dii(t̃− τ) ε0
i (τ). (22)

The proposed approach allows us to determine from the above
equation the virtual distortionsε0

i (t) in each time step, creating
local strain response (transmitted to the sensor located in element
k) equal to the one generated by the input distortionsε0

o(t):

ε0
i (t̃) =

P
τ≤t̃

Dio(t̃− τ) ε0
o(τ)− P

τ<t̃

Dii(t̃− τ) ε0
i (τ)

Dii(0)
. (23)

On the other hand, the following two forms describing identical
strains in locationk can be proposed:

εk(t) =
X

t̃≤t

Dki(t− t̃) ε0
i (t̃) =

X

t̃≤t

Dkj(t− t̃) ε0
j (t̃), (24)



CMM-2005 – Computer Methods in Mechanics June 21-24, 2005, Czestochowa, Poland

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
0

5

10

15

20

25
IDENTIFICATION OF DAMAGE

element number

lo
g 10

(f
1/f n )

n=20 iterations
n=100 iterations

Figure 4: Damage identification — decrease of the objective functions (after20 and100 iterations) in the logarithmic scale.
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o ki j

Figure 7: Scheme of description of wave propagation.

whereε0
i (t̃) is determined by Eqn (23) andε0

j (t̃) by the analo-
gous formula. Therefore, for given input distortionsε0

o(t), the
structural response measured in locationk can be computed in
two ways from the formulas (23), (24).

The above result can be formulated symbolically in the fol-
lowing way:

Dki D−1
ii Dio ε0

o = DkjD
−1
jj Djo ε0

o , (25)

whereD−1
ii andD−1

jj denote inverse operators for the influence
functionalsDii(s), Djj(s). It can be shown that the following
identity follows from the condition (21):

Dii = Djj , (26)

for the functionals of our symmetrical case.
If local stiffness modifications take place in locationi or j

then the following modifications of structural response in loca-
tion k is observed:

∆εi
k(t) =

X

t̃≤t

Dki(t− t̃) ε0µ
i (t̃), (27)

or

∆εj
k(t) =

X

t̃≤t

Dkj(t− t̃) ε0µ
j (t̃), (28)

whereε0µ
i (t) andε0µ

j (t) denote virtual distortions modelling pa-
rameter modifications (cf. (20)).

Lets us now demonstrate that for identical modifications
µi = µj = µ introduced in locationsi andj respectively (there-
fore, for valid condition (20) and for condition (21) from symme-
try of the configuration), the output modifications (27) and (28)
are also identical. To this end, let us describe these modifications
of local strain responses due toε0µ

i (t̃) andε0µ
j (t̃) in the following

two ways (making use of (20) and the left-hand-side expression
of (22) applied toi andj):

∆εi
k(t) =

X

t̃≤t

Dki(t− t̃)(1− µ)
X

τ≤t̃

Dio(t̃− τ) ε0
o(τ), (29)

or

∆εj
k(t) =

X

t̃≤t

Dkj(t− t̃)(1− µ)
X

τ≤t̃

Djo(t̃− τ) ε0
o(τ). (30)

The above expressions describe modifications of responses
(to the same excitationε0

o(t)) measured in locationk, due to local
stiffness modificationµ placed in locationi andj, respectively.

One can see, that the condition (21) implies the identity of the
above response modifications∆εi

k(t) = ∆εj
k(t).

In conclusion, we have demonstrated that if condition (21)
takes place for two locationsi andj, then the same local stiffness
modifications in these two locations lead to the same modifica-
tions of the structural response (measured in locationk). Conse-
quently, it leads to the non-uniquess of the inverse analysis and
damage identification.

5.1. Numerical example

To illustrate the above discussion let us consider the numer-
ical example shown in Fig. 1. One can check that the condition
(21) is satisfied for the symmetrically located pairs of elements
10/40, 11/39, 12/38, . . .24/26. For example, this identity for
the pair of elements No.19 and31 is shown in Fig. 9 and identi-
cal time-dependent componentsD22(t) of the influence matrices
for elements No.19 and 31 are shown in Fig. 10. Different
boundary conditions in two beam ends cause differences in the
corresponding time-dependent components of the influence ma-
tricesD22(t) for pairs of elements9/41, 8/42, . . .1/49. For ex-
ample, functionsD22(t) for the pair of elements6/44 are shown
in Fig. 8.

Two identical signals measured in positionk (element No.
37) as the response for the same excitation (Fig. 11) generated
in locationo (element13) for the same damage of the intensity
µi = 0.45, placed in locationi (element19) or locationj (ele-
ment31), are shown in Fig. 12.

The above result demonstrates that the inverse analysis has
to lead to the non-unique solution of the damage identification
problem (in the inner area of the beam between element No.10
and element No.40).

6. Summary

In general case, when several simultaneous defects are de-
tected, the inverse analysis is not efficient enough. Therefore, in
order to eliminate this problem, only one defect was assumed in
the considered structure. In this case, the impulse influence ma-
trix Dij(t) is reduced — the diagonal matrix (for each time step
t) is computed, which is crucial for saving time and economical
use of the memory. The methodology focused on detection and
identification of only one defect is justified for continuous SHM
installations. In this case one can assume that only one dominant
defect can be generated in each time step.

In this paper it was shown that the presented inverse analysis
(in particular cases) leads to non-unique solutions. It takes place
if damages of equal intensity (also actuator and sensor) are lo-
calised symmetrically with respect to two ends of the presented
beam. As a result of damage identification, an additional (false)
defect is detected.

Practical conclusion is that in case of identical influence func-
tionsDii(t) located on the diagonal of the influence matrix, the
locations of sensor and actuator have to violate symmetry in or-
der to avoid the non-uniquess of the inverse problem solution in
SHM.
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